Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion
نویسندگان
چکیده
We modeled prolonged cerebral hypoperfusion in mice using bilateral common carotid artery stenosis (BCAS) and electroacupuncture (EA) stimulation was applied at two acupoints, Baihui (GV20) and Dazhui (GV14). In behavioral tests of memory, BCAS produced impairments in spatial and short-term memory in mice that were attenuated by therapeutic EA stimulation. Therapeutic use of EA in BCAS also enhanced oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs), in association with white matter improvements in the corpus callosum (CC). In PCR analyses of growth factor gene expression, significant positive changes in 3 genes were observed following EA stimulation in BCAS, and here we highlight alterations in neurotrophin-4/5 (NT4/5). We confirmed EA-mediated positive changes in the expression of NT4/5 and its receptor, tyrosine receptor kinase B (TrkB). Treatment of naïve and BCAS + EA animals with a selective TrkB antagonist, ANA-12, produced losses of myelin and cognitive function that were ameliorated by EA therapy. Moreover, following BCAS we observed an EA-dependent increase in phospho-activated CREB (a downstream mediator of NT4/5-TrkB signaling) in OPCs and OLs of the CC. Our results suggest that EA stimulation promotes the recovery of memory function following white matter injury via a mechanism that promotes oligodendrocyte regeneration and involves NT4/5-TrkB signaling.
منابع مشابه
Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion
Studies have shown that electroacupuncture (EA) ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB) signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and...
متن کاملOxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice.
BACKGROUND AND PURPOSE White matter injury caused by cerebral hypoperfusion may contribute to the pathophysiology of vascular dementia and stroke, but the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that oxidative stress interferes with endogenous white matter repair by disrupting renewal processes mediated by oligodendrocyte precursor cells (OPCs). METHODS ...
متن کاملElectroacupuncture Ameliorates Learning and Memory and Improves Synaptic Plasticity via Activation of the PKA/CREB Signaling Pathway in Cerebral Hypoperfusion
Electroacupuncture (EA) has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are ill-understood. The present study was undertaken to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following EA and to investigate the role of PKA/CREB pathway. We used a rat 2-vessel occlusion (2VO) model and delivered EA at Baihui...
متن کاملThe enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex
Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...
متن کاملContribution of p38 MAPK to the Ameliorating Effect of Enriched Environment on the Cognitive Deficits Induced by Chronic Cerebral Hypoperfusion.
BACKGROUND/AIMS An enriched environment (EE) ameliorates learning and memory impairments induced by chronic cerebral hypoperfusion, and the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway exerts both beneficial and deleterious effects on the nervous system during the progression of ischemia. METHODS The present study investigated whether p38 MAPK participates in the process ...
متن کامل